A Method of Applying Single Higher Order Polynomial Basis Function over Multiple Domains
نویسنده
چکیده
A novel method has been devised where one set of higher order polynomial-based basis functions can be applied over several wire segments, thus permitting to decouple the number of unknowns from the number of segments, and so from the geometrical approximation accuracy. The method extends the current state of art from using the composite piecewise uniform, linear and sinusoidal basis and testing functions onto polynomials. The method has been derived within the framework of a method of moments (MoM) with higher-order polynomial basis functions, and applied to a surface form of the electrical field integral equation, under thin wire approximation. The main advantage of the proposed method is in permitting to reduce the required number of unknowns when modeling curved structures and structures including electrically small features. Derivation of the computational complexity in terms of floating point operations (FLOP) showed a possible speed gain nearly an order of the number of unknowns of direct MoM.
منابع مشابه
A POLYNOMIAL TIME BRANCH AND BOUND ALGORITHM FOR THE SINGLE ITEM ECONOMIC LOT SIZING PROBLEM WITH ALL UNITS DISCOUNT AND RESALE
The purpose of this paper is to present a polynomial time algorithm which determines the lot sizes for purchase component in Material Requirement Planning (MRP) environments with deterministic time-phased demand with zero lead time. In this model, backlog is not permitted, the unit purchasing price is based on the all-units discount system and resale of the excess units is possible at the order...
متن کاملgH-differentiable of the 2th-order functions interpolating
Fuzzy Hermite interpolation of 5th degree generalizes Lagrange interpolation by fitting a polynomial to a function f that not only interpolates f at each knot but also interpolates two number of consecutive Generalized Hukuhara derivatives of f at each knot. The provided solution for the 5th degree fuzzy Hermite interpolation problem in this paper is based on cardinal basis functions linear com...
متن کاملA Non-linear Static Equivalent Model for Multi-layer Annular/Circular Graphene Sheet Based on Non-local Elasticity Theory Considering Third Order Shear Deformation Theory in Thermal Environment
In this paper, it is tried to find an approximate single layer equivalent for multi-layer graphene sheets based on third order non-local elasticity theory. The plates are embedded in two parameter Winkler-Pasternak elastic foundation, and also the thermal effects are considered. A uniform transverse load is imposed on the plates. Applying the non-local theory of Eringen based on third order she...
متن کاملA crack localization method for beams via an efficient static data based indicator
In this paper, a crack localization method for Euler-Bernoulli beams via an efficient static data based indicator is proposed. The crack in beams is simulated here using a triangular variation in the stiffness. Static responses of a beam are obtained by the finite element modeling. In order to reduce the computational cost of damage detection method, the beam deflection is fitted through a poly...
متن کاملApproximation of a Fuzzy Function by Using Radial Basis Functions Interpolation
In the present paper, Radial Basis Function interpolations are applied to approximate a fuzzy function $tilde{f}:Rrightarrow mathcal{F}(R)$, on a discrete point set $X={x_1,x_2,ldots,x_n}$, by a fuzzy-valued function $tilde{S}$. RBFs are based on linear combinations of terms which include a single univariate function. Applying RBF to approximate a fuzzy function, a linear system wil...
متن کامل